1

1

1

1

Mark schemes

Q1.

(a) trichlorofluoromethane

(b) $F \longrightarrow C \longrightarrow Cl \longrightarrow F \longrightarrow Cc \longrightarrow Cl + Cl$ $CCl_3F \longrightarrow CCl_2F + Cl$

radical dot anywhere on each radical

(c) M1 amount of CFC-11 = $\frac{500}{137.5}$ (= 3.64) mol Allow ECF from M1 to M2

> **M2** molecules of $O_3 = 3.64 \times 100,000 \times 6.022 \times 10^{23} = 2.19 \times 10^{29}$ Allow answers in range 2 x 10²⁹ to 2.20 x 10²⁹ (1sf is acceptable as this is an estimate)

- (d) Absorbs (harmful) ultraviolet / uv (light / radiation)

 Protects us from (harmful) uv

 Ignore other wavelengths / types of light
- (e) One of these reasons:
 - lack of evidence that ozone was being depleted
 - lack of alternatives to CFCs
 - commercial interest to continue to use CFCs
 - hard to obtain international agreement

(f) M1 absorbs infrared radiation

M1 idea of IR being taken in

M2 molecule has polar bonds
M2 accept polar molecule
1
[8]

Q2.

В

3-methylhex-1-ene

[1]

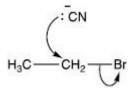
Q3.

D

butanenitrile

[1]

Q4.


Α

1-bromopropane, C–Br bond weaker than C–Cl bond

[1]

Q5.

(a)

M1 arrow from lone pair on C of CN- to the C of the CH2 group

M2 arrow from the C-Br bond to the Br

All arrows are double-headed. Penalise one mark from the total for **2.1** if half headed arrows are used.

Do not penalise the "correct" use of "sticks"

Penalise only once in mechanism for a line and two dots to show a bond

Allow the minus sign to be anywhere on the CN- ion **M2** penalise formal charges or incorrect partial charges on C–Br bond

SN1: allow SN1 mechanism with **M1** for breakage of C–Br bond and **M2** for attack by CN- on correct carbocation

Max 1 of 2 marks for wrong organic reactant Ignore wrong organic product (if shown)

Extra arrows or incorrect covalent bonds:

Penalise the mark for breaking of C–Br bond for any extra arrows involving Br or covalent bond in KBr Penalise the mark for attack by CN- for any extra arrows involving CN or covalent bond in KCN

2

(b) propanenitrile

Ignore any gaps, hyphens, commas Allow propane-1-nitrile

1

(c)

M1 $\frac{55(.0)}{108.9+65.1}$ (x 100) or $\frac{55(.0)}{174(.0)}$ (x 100) or $\frac{55(.0)}{55(.0)+119(.0)}$ (x 100)

1

M2 31.6(%) (must be 3sf)

1

31.6 scores 2 marks; 32 scores 1 mark no ECF

[5]

Q6.

C

CH₃CH₂CH₂Br

[1]

Q7.

Α

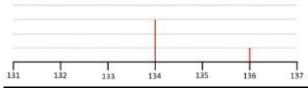
2-methylbut-1-ene

[1]

Q8.

(a) 3-chloro-2,4-dimethylpentane

This answer only apart from slips with commas and dashes


1

(b) **M1** lines at <u>134</u> and <u>136</u>

M1 is for drawing the correct two lines (if other lines are drawn, penalise **M1** (but ignore any additional very small lines at 135 or 137)

1

M2 line at 134 to be three times higher than line at 136

M2 is for the line at 134 being three times as big as the one at 136 (ignore other lines)

Accept cross to represent top of lines; if bars drawn – they should be narrow (less than 10% of division) and clear which value they refer to.

1

(c) M1 nucleophilic substitution

1

1

1

M2 curly arrow from lone pair on O of OH- to C of C-CI

For SN2: penalise **M2** for any additional arrow(s) on NaOH, or for covalent NaOH; penalise **M3** for any additional arrow(s) to/from the Cl to/from anything else

If curly arrows represent an attempt at an elimination mechanism, cannot score **M2** or **M3**

M3 curly arrow from C-Cl bond to the Cl

Penalise **M3** for formal charge on C and/or Cl of C–Cl or incorrect partial charges on C– Cl; ignore other partial charges on uncharged atoms

For SN2: penalise **M2** for any additional arrow(s) on NaOH, or for covalent NaOH; penalise **M3** for any additional arrow(s) to/from the Cl to/from anything else

If curly arrows represent an attempt at an elimination mechanism, cannot score **M2** or **M3**If SN4 mechanism given (less of Cl first followed)

If SN1 mechanism given (loss of Cl first followed by attack by OH-) then:

M2 curly arrow from C–Cl bond to the Cl
M3 curly arrow from lone pair on O of OH to
positive C atom of correct carbocation
penalise M2 for any additional arrow(s) to/from the
Cl to/from anything else

penalise **M3** for any additional arrow(s) on NaOH

M4 correct structure of alcohol (in any form)

M4 is independent

M4 ignore presence of non-organic products

(d) M1 elimination

M1 allow base elimination (but nothing else)

M2 base

1

1

1

M2 allow proton acceptor

M3 curly arrow from lone pair on O of OH- to H on one of the C atoms adjacent to the C–Cl

If curly arrows represent an attempt at a substitution mechanism, cannot score **M3** or **M4**

M4 curly arrow from a correct C-H bond adjacent to the C-Cl to a correct C-C bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C-H bond in M3

If curly arrows represent an attempt at a substitution mechanism, cannot score **M3** or **M4**

M5 curly arrow from C–Cl bond to the Cl (mark is independent Penalise M5 for formal charge on C and/or Cl of C–Cl or incorrect partial charges on C–Cl; ignore other partial charges on uncharged atoms

M6 correct structure of alkene (in any form)

M6 is independent

M6 ignore presence of non-organic products

If E1 mechanism given (loss of Cl first followed by attack by OH-) then:

M3 curly arrow from C–Cl bond to the Cl
M4 curly arrow from lone pair of OH to a correct H
on the correct C adjacent to C+ on the carbocation
M5 curly arrow from a correct C-H bond to a correct
C-C bond

penalise **M3** for any additional arrow(s) to/from the CI to/from anything else penalise **M4** for any additional arrow(s) on KOH

(e) C as C=C 1620-1680 cm⁻¹ OR no O-H 3230-3550 cm⁻¹

need the correct compound and an explanation
full wavenumber range or value(s) within the range
on this occasion candidates do not need to refer to
the O-H bond being O-H alcohol as opposed to O-H
acid – just reference to O-H with wavenumbers is
required

1

1

(f) <u>C-Br</u> is weaker than <u>C-Cl</u> or

C-Br has lower bond enthalpy than C-CI or

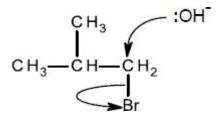
C-Br breaks more easily C-Cl

Must compare the C–Br and C–Cl bonds specifically

Ignore references to bond length, size of atoms, shielding, electronegativity and polarity

Penalise idea that bromine is more reactive than chlorine

1 [15]


Q9.

С

[1]

Q10.

(a) M1 nucleophilic substitution

Penalise **M3** for formal charge on C and/or Br of C-Br or incorrect partial charges on C-Br

Max 1 out of 2 for **M2** & **M3** for incorrect reactant or product (ignore poorly drawn bond from C to OH group in product if shown)

For SN²

penalise **M2** for any additional arrow(s) on NaOH penalise **M3** for any additional arrow(s) to/from the Br to/from anything else

M2 curly arrow from lone pair on O of OH⁻ to C of C-Br

1

M3 curly arrow from C-Br bond to the Br

1

If SN¹ mechanism given (loss of Br first followed by attack by OH⁻) then:

M2 curly arrow from C-Br bond to the Br

M3 curly arrow from lone pair on O of OH⁻ to positive C atom of correct carbocation

penalise M2 for any additional arrow(s) to/from the

1

1

1

1

[8]

Br to/from anything else penalise **M3** for any additional arrow(s) on NaOH

If curly arrows represent an attempt at an elimination mechanism, cannot score **M2** or **M3**

(b) M1 Amount 1-bromo-2-methylpropane $(= (2 \times 1.26) / 136.9 = 2.52/136.9) = 0.0184 \text{ mol}$

Correct answer scores 3 marks; answer to at least 2sf and any individual marks for M1/2 should be at least 2sf; answers that are a factor of 10^x out score 2;

M2 mass of 2-methylpropan-1-ol expected $(= 0.0184 \times 74.0) = 1.36 \text{ g}$ Allow ECF through the question

M3 % yield = $100 \times (0.895/1.36) = 65.7\% (65-67\%)$

Alternative method:

M2 amount of 2-methylpropan-1-ol produced = 0.895/74.0 = 0.0121 mol **M3** % yield = $100 \times (0.0121/0.0184) = 65.7\%$ (65-67%)

Allow 2 marks for 82.7-83% (comes from starting with 2 g not 2.52 g), with answers that are a factor of 10° out from this scoring 1

(c) M1 methylpropene

M1 Do not allow any names with numbers for the position of the double bond. Allow 2-methylpropene but no other answer Ignore any drawn mechanism

M2 elimination

M2 allow base (or basic) elimination but no other answer

Q11. D

Q12. A

	[1]
Q13. C	[1]
Q14. D	[1]
Q15. C	[1]
Q16. D	[1]